Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 5(5): eaav8358, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31058225

RESUMEN

Holography relies on the interference between a known reference and a signal of interest to reconstruct both the amplitude and the phase of that signal. With electrons, the extension of holography to the ultrafast time domain remains a challenge, although it would yield the highest possible combined spatiotemporal resolution. Here, we show that holograms of local electromagnetic fields can be obtained with combined attosecond/nanometer resolution in an ultrafast transmission electron microscope (UEM). Unlike conventional holography, where signal and reference are spatially separated and then recombined to interfere, our method relies on electromagnetic fields to split an electron wave function in a quantum coherent superposition of different energy states. In the image plane, spatial modulation of the electron energy distribution reflects the phase relation between reference and signal fields. Beyond imaging applications, this approach allows implementing quantum measurements in parallel, providing an efficient and versatile tool for electron quantum optics.

2.
Nat Mater ; 18(6): 573-579, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31061485

RESUMEN

Vortex-carrying matter waves, such as chiral electron beams, are of significant interest in both applied and fundamental science. Continuous-wave electron vortex beams are commonly prepared via passive phase masks imprinting a transverse phase modulation on the electron's wavefunction. Here, we show that femtosecond chiral plasmonic near fields enable the generation and dynamic control on the ultrafast timescale of an electron vortex beam. The vortex structure of the resulting electron wavepacket is probed in both real and reciprocal space using ultrafast transmission electron microscopy. This method offers a high degree of scalability to small length scales and a highly efficient manipulation of the electron vorticity with attosecond precision. Besides the direct implications in the investigation of nanoscale ultrafast processes in which chirality plays a major role, we further discuss the perspectives of using this technique to shape the wavefunction of charged composite particles, such as protons, and how it can be used to probe their internal structure.

3.
Nat Commun ; 10(1): 1069, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30824703

RESUMEN

The authors became aware of a mistake in the original version of this Article. Specifically, an extra factor γ was incorrectly included in a number of mathematical equations and expressions. As a result of this, a number of changes have been made to both the PDF and the HTML versions of the Article. A full list of these changes is available online.

4.
Nat Commun ; 9(1): 2694, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-30002367

RESUMEN

Light-electron interaction is the seminal ingredient in free-electron lasers and dynamical investigation of matter. Pushing the coherent control of electrons by light to the attosecond timescale and below would enable unprecedented applications in quantum circuits and exploration of electronic motions and nuclear phenomena. Here we demonstrate attosecond coherent manipulation of a free-electron wave function, and show that it can be pushed down to the zeptosecond regime. We make a relativistic single-electron wavepacket interact in free-space with a semi-infinite light field generated by two light pulses reflected from a mirror and delayed by fractions of the optical cycle. The amplitude and phase of the resulting electron-state coherent oscillations are mapped in energy-momentum space via momentum-resolved ultrafast electron spectroscopy. The experimental results are in full agreement with our analytical theory, which predicts access to the zeptosecond timescale by adopting semi-infinite X-ray pulses.

5.
Phys Rev Lett ; 120(11): 117201, 2018 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-29601740

RESUMEN

We demonstrate that light-induced heat pulses of different duration and energy can write Skyrmions in a broad range of temperatures and magnetic field in FeGe. Using a combination of camera-rate and pump-probe cryo-Lorentz transmission electron microscopy, we directly resolve the spatiotemporal evolution of the magnetization ensuing optical excitation. The Skyrmion lattice was found to maintain its structural properties during the laser-induced demagnetization, and its recovery to the initial state happened in the sub-µs to µs range, depending on the cooling rate of the system.

6.
Nat Commun ; 4: 2324, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23945795

RESUMEN

The parametric interaction of light beams in nonlinear materials is usually thought to be too weak to be observed when the fields involved are at the single-photon level. However, such single-photon level nonlinearity is not only fundamentally fascinating but holds great potential for emerging technologies and applications involving heralding entanglement at a distance. Here we use a high-efficiency waveguide to demonstrate the sum-frequency generation between a single photon and a single-photon level coherent state. The use of an integrated, solid state, room temperature device and telecom wavelengths makes this type of system directly applicable to future quantum communication technologies such as device-independent quantum key distribution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...